The Myth of the Machine?
Artificial Intelligence and Criticism of Society
DOI:
https://doi.org/10.32387/prokla.v54i217.2167Keywords:
Artificial Intelligence, Climate, Political Economy, Technology, WorkAbstract
Artificial intelligence (AI) is omnipresent. AI dominates all debates and the use of AI is being discussed in almost all areas. AI is seen as a new technological »revolution«, a »saviour« that is supposed to transform the world of work. In reali-ty, this hype is primarily based on a mythologisation of technology. AI also serves to concentrate power in the big tech companies and is relevant to the new geopoliti-cal situation. The negative social and climate consequences are being hidden behind both the promises of salvation and the apocalyptic scenarios.
Downloads
References
Altenried, Moritz (2020): The platform as factory: Crowdwork and the hidden labour behind artificial intelligence. Capital & Class 44(2): 145-158. DOI: https://doi.org/10.1177/0309816819899410.
Aloisi, Antonio / De Stefano, Valerio (2022): Your Boss Is an Algorithm: Artificial Intelligence, Platform Work and Labour. Oxford/New York/Dublin. DOI: https://doi.org/10.5040/9781509953219.
Atkins, Ed (2021). Tracing the ›cloud‹: Emergent political geographies of global data centres. In: Political Geography 86: 102306. DOI: https://doi.org/10.1016/j.polgeo.2020.102306.
Agrawal, Ajay / McHale, John / Oettl, Alexander (2023): Superhuman science: How artificial intelligence may impact innovation. Journal of Evolutionary Economics 33(5): 1473-1517. DOI: https://doi.org/10.1007/s00191-023-00845-3.
Bareis, Jascha / Katzenbach, Christian (2022): Talking AI into being: The narratives and imaginaries of national AI strategies and their performative politics. In: Science, Technology, & Human Values 47(5): 855-881. DOI: https://doi.org/10.1177/01622439211030007.
Benanav, Aaron (2021): Automatisierung und die Zukunft der Arbeit. Berlin.
– (2023): The revolution will not be brought to you by ChatGPT. URL: https://www.newstatesman.com/ideas/2023/04/revolution-brought-chatgpt-artificial-intelligence, Zugriff: 24.10.2024.
Bender, Emily M. u.a. (2021): On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In: FAccT ’21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency: 610-623. DOI: https://doi.org/10.1145/3442188.3445922.
Birch, Kean / Chiappetta, Margaret / Artyushina, Anna (2020): The problem of innovation in technoscientific capitalism: data rentiership and the policy implications of turning personal digital data into a private asset. In: Policy Studies 41(5): 468-487. DOI: https://doi.org/10.1080/01442872.2020.1748264.
Birhane, Abebe (2022): The unseen Black faces of AI algorithms. In: nature. DOI: https://doi.org/10.1038/d41586-022-03050-7.
– u.a. (2022): The values encoded in machine learning research. In: FAccT ’22: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency: 173-184. Doi: https://doi.org/10.1145/3531146.3533083.
Brashear Jeffrey u.a. (2017:) The new, new normal: growth exponential powered by AI. London.
Casilli, Antonio A. (2017): Digital Labor Studies Go Global: Toward a Digital Decolonial Turn. In: International Journal of Communication 11: 3934-3954.
Carugati, Christophe (2023): Competition in Generative Artificial Intelligence Foundation Models (14/2023): Bruegel Working Paper. DOI: https://doi.org/10.2139/ssrn.4553787.
Cole, Matthew / Radice, Hugo / Umney, Charles (2020): The Political Economy of Datafication and Work: A New Digital Taylorism? In: Panich, Leo / Albo, Greg (Hg.): Socialist Register 2021. London: 78-99.
Crawford, Kate (2022): Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. New Haven, CT. DOI: https://doi.org/10.12987/9780300252392.
Couldry, Nick / Mejias, Ulises A. (2021): The decolonial turn in data and technology research: what is at stake and where is it heading? In: Information, Communication & Society 26(4): 786-802. DOI: https://doi.org/10.1080/1369118X.2021.1986102.
Dath, Dietmar (2024): Wer ›die KI‹ sagt, ist schon reingefallen. In: Jacobin 17/2024: 14-22.
Dauvergne, Peter (2022): Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Review of International Political Economy 29(3): 696-718. DOI: https://doi.org/10.1080/09692290.2020.1814381.
Delfanti, Alessandro (2021): The Warehouse: Workers and Robots at Amazon. London. DOI: https://doi.org/10.2307/j.ctv2114fnm.
Deranty, Jean-Philipp / Corbin, Thomas (2024): Artificial intelligence and work: a critical review of recent research from the social sciences. In: AI & Society 39: 675-691. DOI: https://doi.org/10.1007/s00146-022-01496-x.
DGB (Deutscher Gewerkschaftsbund) (2020): Künstliche Intelligenz (KI) für Gute Arbeit. Ein Konzeptpapier des Deutschen Gewerkschaftsbundes zum Einsatz von Künstlicher Intelligenz (KI) in der Arbeitswelt. März 2020. URL: https://www.dgb.de/fileadmin/download_center/Positionen_und_Thesen/DGB-Konzept-Kuenstliche-Intelligenz-KI-fuer-Gute-Arbeit.pdf, Zugriff: 24.10.2024.
Elish, Madeleine Clare / Boyd, Dana (2018): Situating methods in the magic of Big Data and AI. In: Communication monographs 85(1): 57-80. DOI: https://doi.org/10.1080/03637751.2017.1375130.
Ensmenger, Nathan (2018): The environmental history of computing. In: Technology and Culture 59(4): 7-33. DOI: https://doi.org/10.1353/tech.2018.0148.
Eubanks, Virginia (2019): Automating Inequality. How High-Tech Tools Profile, Police, and Punish the Poor. New York.
EU (Europäische Union) (2024): Verordnung über künstliche Intelligenz. 2024/1689. Straßburg.
Finocchiaro, Giusella (2024): The regulation of artificial intelligence. In: AI & SOCIETY 39(4): 1961-1968. DOI: https://doi.org/10.1007/s00146-023-01650-z.
Gebru, Timnit / Torres, Émile (2024): The TESCREAL bundle: Eugenics and the promise of utopia through artificial general intelligence. In: First Monday 29(4). DOI: https://doi.org/10.5210/fm.v29i4.13636.
Google (2024): Environmental Report. URL: https://www.gstatic.com/gumdrop/sustainability/google-2024-environmental-report.pdf, Zugriff: Zugriff: 24.10.2024.
Heiland, Heiner (2018): Algorithmus = Logik + Kontrolle. Algorithmisches Management und die Kontrolle der einfachen Arbeit. In: Daniel Houben und Bianca Prietl (Hg.): Datengesellschaft. Einsichten in die Datafizierung des Sozialen. Bielefeld: 233-252. https://doi.org/10.1515/9783839439579-010.
Jarrahi, Mohammed H. u.a. (2021): Algorithmic management in a work context. In: Big Data & Society 8(2). DOI: https://doi.org/10.1177/20539517211020332.
Kassem, Sarrah (2023): Work and Alienation in the Platform Economy: Amazon and the Power of Organization. Bristol. DOI: https://doi.org/10.51952/9781529226577.
Kinder, Molly u.a. (2024): Generative AI, the American worker, and the future of work. URL: https://www.brookings.edu/articles/generative-ai-the-american-worker-and-the-future-of-work/, Zugriff: 24.10.2024.
Kort, Katharina / Witsch, Kathrin / Bomke, Luisa (2024): Das Energieproblem der KI (16.5.2024). Handelsblatt KI Spezial: 1.
Krempl, Stefan (2021): Utah: Prüfer finden keine KI bei KI-Überwachungsfirma Banjo. URL: https://www.heise.de/news/Utah-Pruefer-finden-keine-KI-bei-KI-Ueberwachungsfirma-Banjo-6009371.html, Zugriff: 24.10.2024.
Leisegang, Daniel (2023): Prekäre Klickarbeit hinter den Kulissen von ChatGPT. In: https://netzpolitik.org/2023/globaler-sueden-prekaere-klickarbeit-hinter-den-kulissen-von-chatgpt/, Zugriff: 24.10.2024.
Lenzen, Manuela (2024): Künstliche Intelligenz. Fakten, Chancen, Risiken. München. DOI: https://doi.org/10.17104/9783406815584.
Mitchell, Melanie (2019): Artificial Intelligence. A Guide for Thinking Humans. New York.
Mooney, Attracta / Hodgson, Camilla (2024): ›Let’s not go overboard‹ on worries about AI energy use, Bill Gates says. In: Financial Times (27.6.2024).
Montanaro, Benedetta / Croce, Annalisa / Ughetto, Elisa (2024): Venture capital investments in artificial intelligence. In: Journal of Evolutionary Economics: 1-28. DOI: https://doi.org/10.1007/s00191-024-00857-7.
Mosqueira-Rey, Eduardo u.a. (2023): Human-in-the-loop machine learning: a state of the art. In: Artificial Intelligence Review 56: 3005-3054. DOI: https://doi.org/10.1007/s10462-022-10246-w.
Muldoon, James / Wu, Boxi (2023): Artificial Intelligence in the Colonial Matrix of Power. In: Philosophy & Technology 36(80). DOI: https://doi.org/10.1007/s13347-023-00687-8.
Muldoon, James u.a. (2023): The poverty of ethical AI: impact sourcing and AI supply chains. AI & Society. DOI: https://doi.org/10.1007/s00146-023-01824-9.
National Artificial Intelligence Research Resource Task Force (2023): Strengthening and Democratizing the U.S. Artificial Intelligence Innovation Ecosystem: An Implementation Plan for a National Artificial Intelligence Research Resource. URL: https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf, Zugriff: 24.10.2024.
Pasquinelli, Matteo (2024): Das Auge des Meisters. Eine Sozialgeschichte Künstlicher Intelligenz. Münster.
Rikap, Cecilia / Lundvall Bengt-Åke (2021): The Digital Innovation Race, Conceptualizing the Emerging New World Order. Cham. DOI: https://doi.org/10.1007/978-3-030-89443-6.
Rolf, Steve / Schindler, Seth (2023): The US–China rivalry and the emergence of state platform capitalism. In: Environment and Planning A: Economy and Space 55(5): 1255-1280. DOI: https://doi.org/10.1177/0308518X221146545.
Schaupp, Simon (2024): Kybernetik. In: Dederich, Markus / Zirfas, Jörg (Hg.): Optimierung: Ein interdisziplinäres Handbuch. Berlin/Heidelberg: 237-242. DOI: https://doi.org/10.1007/978-3-662-67307-2_34.
Schlichter, Leo (2024): Planning for Degrowth – How artificial intelligence and Big Data revitalize the debate on democratic economic planning. Hochschule für Wirtschaft und Recht. Working Paper, No. 231/2024.
Schmidt, Florian Alexander (2019): Crowdproduktion von Trainingsdaten. Zur Rolle von Online-Arbeit beim Trainieren autonomer Fahrzeug. Study der Hans-Böckler-Stiftung, Nr. 417. Düsseldorf.
Smith, James (2011): Tantalus in the digital age: coltan ore, temporal dispossession, and »movement« in the eastern Democratic Republic of the Congo. In: American Ethnologist 38(1): 17-35. DOI: https://doi.org/10.1111/j.1548-1425.2010.01289.x.
Srnicek, Nick (2023): Daten, Datenverarbeitung, Arbeit. In: Carstensen, Tanja / Schaupp, Simon / Sevignani, Sebastian (Hg.): Theorien des digitalen Kapitalismus. Berlin: 187-205.
Suleyman, Mustafa / Bhaskar, Michael (2024): The Coming Wave. Künstliche Intelligenz, Macht und das größte Dilemma des 21. Jahrhunderts. München. DOI: https://doi.org/10.17104/9783406814143.
Thornhill, John (2024): AI is a green curse as well as a blessing. In: Financial Times (7.6.2024): 15.
Tubaro, Paola u.a. (2020): The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. In: Big Data & Society 7(1). DOI: https://doi.org/10.1177/2053951720919776.
van der Vlist, Fernando / Helmond, Anne / Ferrari, Fabian (2024): Big AI: Cloud infrastructure dependence and the industrialisation of artificial intelligence. In: Big Data & Society 11(1): 20539517241232630. DOI: https://doi.org/10.1177/20539517241232630.
Verdecchia, Roberto / Sallou, June / Cruz, Luis (2023): A systematic review of Green AI. In: WIREs Data Mining and Knowledge Discovery 13(4): 1-26. DOI: https://doi.org/10.1002/widm.1507.
Vinsel, Lee (2021): You’re doing it wrong: Notes on criticism and technology hype (1.2.2021). URL: https://sts-news.medium.com/youre-doing-it-wrong-notes-on-criticism-and-technology-hype-18b08b4307e5, Zugriff: 24.10.2024.
de Vries, Alex (2023): The growing energy footprint of artificial intelligence. In: Joule (10)7: 2191-2194. DOI: https://doi.org/10.1016/j.joule.2023.09.004.
Wang, Peng u.a. (2024): E-waste challenges of generative artificial intelligence. In: Nature Computational Sciences. DOI: https://doi.org/10.1038/s43588-024-00712-6.
Weinberger, Jason (2015): Head of Silicon Valley’s most important startup farm says we’re in a ›mega bubble‹ that won’t last. in: Business Insider. URL: https://www.businessinsider.com/sam-altman-y-combinator-talks-mega-bubble-nuclear-power-and-more-2015-6, Zugriff: 24.10.2024.
Wong, Matteo (2023): AI doomerism is a decoy, in: The Atlantic (2.6.2023). URL: https://www.theatlantic.com/technology/archive/2023/06/ai-regulation-sam-altman-bill-gates/674278/, Zugriff: 24.10.2024.
Wooldridge, Michael (2020): The Road to Conscious Machines. The Story of AI. London.
Zanzotto, Fabio Massimo (2019): Viewpoint: Human-in-the-loop Artificial Intelligence. In: Journal of Artificial Intelligence Research. 64: 243-252. DOI: https://doi.org/10.1613/jair.1.11345.